

MODULE SPECIFICATION PROFORMA

Module Code:	LND307		
Module Title:	Introduction to Ex	xperimental Design and	Mathematical Analysis
Level:	3	Credit Value:	20
Cost Centre(s):	GAHT	JACS3 code:	G120

School: Social & Life Sciences	Module Leader:	Dr Ian Ratcliffe
--------------------------------	-------------------	------------------

Scheduled learning and teaching hours	50 hrs
Guided independent study	150 hrs
Placement	0 hrs
Module duration (total hours)	200 hrs

Guidance - normally, the university would expect to see the following amounts of contact time and independent learning time for taught modules as part of its Modular Curriculum Framework –

Level	Credit volume	Overall learning Contact		Independent	
		hours		learning hours	learning hours
Level 3	20 credits	200 hrs		40	160
Level 4	20 credits	200 hrs		36	164
Level 5	20 credits	200 hrs		30	170
Level 6	20 credits	200 hrs		24	176
Level 7	20 credits	200 hrs		21	179

Programme(s) in which to be offered (not including exit awards)	Core	Option
BSc (Hons) Equine Science and Welfare Management (including Foundation Yr)	~	
FdSc Animal Studies (including Foundation Yr)	✓	
BSc (Hons) Forensic Science (including Foundation Yr)	✓	
BSc (Hons) Animal Science (including Foundation Yr)	~	

MODULE SPECIFICATION PROFORMA

Pre-requisites

None

Office use only

Initial approval: Sept 2014 With effect from: Sept 2018 APSC Date and details of revision: 12/9/18 Version no:

Version no:1

Module Aims

- To appreciate the use of scientific methods and concepts
- To understand the principles of experimental design
- To appreciate methods in the interpretation and analysis of data

Intended Learning Outcomes

Key skills for employability

KS1	Written, oral and media communication skills
-----	--

- KS2 Leadership, team working and networking skills
- KS3 Opportunity, creativity and problem solving skills
- KS4 Information technology skills and digital literacy
- KS5 Information management skills
- KS6 Research skills
- KS7 Intercultural and sustainability skills
- KS8 Career management skills
- KS9 Learning to learn (managing personal and professional development, selfmanagement)
- KS10 Numeracy

At	At the end of this module, students will be able to		Key Skills			
	Explain and apply mathematical notation and algebraic expressions.	KS1	KS10			
1		KS2				
		KS6				
2	Draw graphs and determine their gradients.	KS1	KS10			
		KS3				
		KS4				
	Interpret basic statistics and examples of probability and demonstrate their applications in science	KS1	KS10			
3		KS4				
		KS5				
	Design a laboratory experiment and collect observations	KS1	KS10			
4		KS3	KS6			
		KS5				
	Apply principles to the analysis and interpretation of data	KS1	KS10			
		KS3				
5		KS6				
Tra	Transferable skills and other attributes					
Pro	Problem solving					

- □ Mathematical applications
- Design, analysis, and synthesis
- □ ICT

Presentation skills

Derogations

None

Assessment:

Indicative Assessment Tasks:

Assessment One: Presentation of data analysis from a short experiment designed and undertaken by the student.

Assessment Two: Written assignment comprising completion of a small number of 'long answer' mathematical problems.

Assessment Three: Exam on mathematical problems. This will be conducted as an open book assessment

Assessment number	Learning Outcomes to be met	Type of assessment	Weighting (%)	Duration (if exam)	Word count (or equivalent if appropriate)
1	4,5.	Presentation	40	10 mins	
2	2,3	Coursework	30		
3	1	Examination	30	1.5 hours	

Learning and Teaching Strategies:

The module will be presented to students through a series of lectures and learning reinforced through module tutor guided and self-directed study and interactive problem-solving tutorial sessions utilising laboratory equipment where appropriate. Formative assessment involves tutorial questions and summative assessment is by In-Class

Tests/examinations and presentation.

Syllabus outline:

Use of theories and models to explain observations and cause and effect in science Numbers, scientific notation and significant figures. Algebra and manipulation of algebraic expressions. Powers, indices, exponentials and logarithms. Some simple rules of differentiation. Integration: reversing differentiation. Experimental design Dependent and independent variables Accuracy and precision Sampling Replication Reproducibility Data analysis Producing and interpreting graphs Averages Percentages Introduction to probability. Use of statistics in experimental analysis Normal distribution. Basic t-test. Use of ICT in data analysis

Indicative Bibliography:

Essential reading

Ruxton, G.D. & Colegrave, N. (2016) *Experimental Design for the Life Sciences*. Oxford: Oxford University Press

Other indicative reading

Lawler, G. (2011) Understanding Maths: Basic Mathematics Explained. 4th ed. Conway: Aber Publishing.

Stroud, K.A. & Booth, D.J. (2009) *Foundation Mathematics*. London: Palgrave Macmillan Page, S., Berry, J. & Hampson, H. (2002) *Mathematics - A Second Start*. 2nd ed. Cambridge: Woodhead Publishing.